Introduction

Vitamin C The peroxide number is a measurement of the concentration of \(-\text{O-O-}\) groups in edible oils. It is a measurement of the decomposition of the product and in many countries, official standards specify a maximum peroxide number beyond which the oil is unfit for human consumption. The peroxide number is therefore measured by oil manufacturers during production and after storage to check its preservation. International standards use a redox titration in non-aqueous media, results are generally expressed in \(\mu\text{g of peroxide (or active oxygen)}\) per gram of product, but mmoles/kg or meq of O2/kg are also used. The following two standards use the same titration principle but not the same solvents. NFT 60-220 uses chloroform CHCl3 ISO 3960 uses isooctane C8H18

According to these two standards, the equivalence point of the redox titration is determined using starch as colour indicator, but it is very easy to use potentiometric determination.

Summary

Peroxide number determination involves a two-step redox reaction:

1) Reaction of peroxide group with an excess of iodide ion according to:

\[
\text{R-O-O-R} + 2\text{I}^- + 2\text{H}^+ \rightarrow 2\text{ROH} + \text{I}_2
\]

2) Titration of iodine with Na\(_2\)S\(_2\)O\(_3\) solution (generally 0.01 or 0.02M) according to:

\[
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \rightarrow 2\text{I}^- + \text{S}_4\text{O}_6^{2-}
\]

The titration is run according to inflection detection with continuous addition of the titrant with a combined platinum/reference electrode.

Electrode and reagents

MC3051Pt-9 Metal electrode, combined, platinum (part no. E31M003) with CL114 cable (part no. A94L114).

Glacial acetic acid (CH\(_3\)COOH)

Chloroform (CHCl3) (NFT 60-220)

Iooctane C8H18 (ISO 3960)

Solvent used for ISO 3960

Acetic acid/isooctane solution by mixing of 3 volumes of glacial acetic acid and 2 volumes of isooctane.

Saturated aqueous solution of potassium iodide (KI)

Note that the solubility of KI in water is approximately 150g/100 ml of water.

Do not prepare too a large volume of this solution. Store it in the dark.

Distilled water

Sodium thiosulphate solution 0.01M (or 0.02 mol/l) in water (Na\(_2\)S\(_2\)O\(_3\))

To prepare a 0.01 mol/l (or 0.02 mol/l) sodium thiosulphate solution, dissolve 2.4818 g (or 4.9636 g) of Na\(_2\)S\(_2\)O\(_3\), 5H\(_2\)O in 500 ml of freshly distilled water (or freshly boiled and cooled deionised water).

Add 2 or 3 drops of CHCl3 (or 0.4 g of NaOH), as stabilising agent, and complete to 1000 ml using a volumetric flask.

Wait for one day and filter the solution if necessary (precipitation of sulphur can occur).

Stock the solution in a brown glass flask.

From time to time, look at the solution and filter or standardise again if necessary.

Na\(_2\)S\(_2\)O\(_3\), 5H\(_2\)O has a molecular weight corresponding to 248.181 g/mol.

As solutions with a concentration corresponding to 0.01M are not very stable, do not store this solution for more than 1 week.

As Sodium thiosulphate solution 0.1M is commercially available, you can prepare the 0.01 or 0.02M solution by dilution.

Check that solvents and reagents do not contain dissolved oxygen. Bubbling nitrogen in the different solutions is one way to do this.

Inflection Detection settings

CONTINUOUS IP MODE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titration with blank</td>
<td>5 ml</td>
</tr>
<tr>
<td>Burette volume</td>
<td>(see working range)</td>
</tr>
<tr>
<td>Max. volume:</td>
<td>3.5 ml</td>
</tr>
<tr>
<td>Stirring speed:</td>
<td>500 rpm</td>
</tr>
<tr>
<td>Working mode:</td>
<td>mV i=0</td>
</tr>
<tr>
<td>Blank:</td>
<td>YES</td>
</tr>
<tr>
<td>Start timer:</td>
<td>10 s</td>
</tr>
</tbody>
</table>
Min. ordinate: 150 mV
Max. ordinate: 250 mV
Stop point: 0 mV
Minimum speed: 0.20 ml/min
Maximum speed: 3.00 ml/min
Smoothing parameter: 4
Titration: Decreasing potential
Inflection number: 1
Inflection 1:
Min. ordinate: 150 mV
Max. ordinate: 280 mV
Stop at last IP: YES
Sample
Dilution: NO
Sample unit: g
Sample amount: 2
(see working range)

Results
Result 1:
Unit: mg/kg
Reaction: 1 sample + 2 Titrant
Molar weight: 16 g/mol
(see results)
No of equations: 2
Equation 1
Unit: mmoles O2/kg
Formula: R1/16
Equation 2
Unit: meq O2/kg
Formula: R1/8

Procedure
According to NFT 60-220
Use a stoppered titration vessel.
First run a blank titration according the following procedure but without sample.
Then run a titration.
Accurately weigh the necessary amount of edible oil.
Add 10 ml of chloroform and stir to dissolve.
Add 15 ml of glacial acetic acid and 1 ml of saturated potassium iodide solution.
Stop the titration vessel, stir for 1 minute and wait 5 minutes, keeping away from daylight.
Then add 75 ml of distilled water and titrate with 0.01 (or 0.02 mol/l) thiosulphate solution.

Procedure according to ISO 3960
The general procedure is exactly the same as for NFT 60-220.
Weigh the necessary sample amount.
Dilute with 50 ml of the isoctane/acetic acid solution.
Add 0.5 ml of potassium iodide solution and stir for 1 minute then add 30 ml of distilled water.

Results
Expressed as µg/g (or mg/kg) of active oxygen the results corresponds to:

\[R = C_{\text{titr}} \times V_{\text{titr}} \times 16 \times 1000 \div (2 \times W_{\text{amp}}) \]

\[C_{\text{titr}} = \text{Titrant concentration in mol/l} \]
\[V_{\text{titr}} = \text{Necessary titrant volume in ml} \]
\[1000 = \text{Constant to express the result in µg} \]
\[16 = \text{molar weight of oxygen} \]
\[2 = \text{As 2 moles of titrant correspond to 1 mole of sample} \]
\[W_{\text{amp}} = \text{Weighed amount of sample in g} \]

Some other units can be used for result expression.
Result in mmoles/kg corresponds to: \(R \div 16 \)
Result in meq of active oxygen/kg corresponds to: \(R \div 8 \)

3 determinations on old peanut oil
Mean:
192.8 mg/kg
(standard deviation: 2.6)
12.05 mmoles O2/kg
(standard deviation: 0.16)
24.10 meq O2/kg
(standard deviation: 0.33)
(blank determination: 0.107 ml)

Working Range
Use the following table which summarises the data in both standards to determine the necessary amount of sample:

<table>
<thead>
<tr>
<th>Peroxide number µg/g or mg/g</th>
<th>Peroxide number meq/kg</th>
<th>Sample amount (g)</th>
<th>Titrant volume ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0-12</td>
<td>5.0-2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>100-150</td>
<td>12-18.75</td>
<td>2.0-1.2</td>
<td>2.25</td>
</tr>
<tr>
<td>150-250</td>
<td>18.75-31.25</td>
<td>1.2-0.8</td>
<td>2.25-1.5</td>
</tr>
<tr>
<td>250-400</td>
<td>31.25-50</td>
<td>0.8-0.5</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>400-700</td>
<td>50-87.5</td>
<td>0.5-0.3</td>
<td>2.5-2.6</td>
</tr>
</tbody>
</table>

Notes
Procedure
The main difficulty is to obtain reproducible results avoiding the influence of atmospheric oxygen.
Note that the saturated solution of potassium iodide is highly oxidisable. It is necessary to check this solution using the thiosulphate 0.01M solution according to the procedure described in the standards.
Low values for blanks are recommended (between 0.05 and 0.1 ml according to the standards).
After addition of water, the titration medium is a two-phase solution. Check you immerse the measuring electrode in the aqueous phase. Do not use too high a titration speed, because it is necessary to free all the iodine from the solvent layer.

Curves